Detection of Epstein-Barr virus in T-cell prolymphocytic leukemia cells in vitro

Ke Lan a, b, Masanao Murakami a, Tathagata Choudhuri a, Donald E. Tsai c, Stephen J. Schuster c, Mariusz A. Wasik d, Erle S. Robertson a, ∗

a Department of Microbiology and the Tumor Virology Program of Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, 3610 Hamilton Walk, Philadelphia, PA 19104, United States
b Division of Hematology–Oncology, Hospital of University of Pennsylvania, 15 Penn Tower, 3400 Spruce Street, Philadelphia, PA 19104, United States
c Institut Pasteur of Shanghai, Chinese Academy of Sciences, South Chongqing Road 225, Shanghai 200025, PR China
d Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical School, 3610 Hamilton Walk, Philadelphia, PA 19104, United States

ARTICLE INFO

Article history:
Received 2 February 2008
Received in revised form 20 June 2008
Accepted 17 July 2008

Keywords:
Epstein-Barr virus
T-cell prolymphocytic leukemia
Infection

ABSTRACT

Background: Epstein-Barr virus (EBV) is closely associated with the development of a number of tumors. During latent infection, EBV continuously expresses a number of viral genes which are essential for cell transformation and maintenance of the malignant phenotype of EBV-related tumors. There has been no previous link between EBV and T-cell prolymphocytic leukemia (T-PLL), a distinctive form of leukemia derived from T-cells at an intermediate stage of differentiation between a cortical thymocyte and a mature peripheral blood T-cell.

Objective: To determine if EBV was present in the T-PLL cells collected.

Study design: T-PLL cells were isolated from the peripheral blood of a patient diagnosed with T-PLL and continuously cultured for about 1 year. The existence of EBV in these cells was detected using multiple strategies including PCR, Western blotting, immunofluorescent assay and flow cytometry analysis.

Results: The EBV genome was present in these T-PLL cells by PCR analysis across multiple sites in the viral genome. In addition, these T-PLL cells expressed a number of EBV latent antigens. The EBV oncoproteins LMP1, EBNA1 and EBNA3C were expressed in the majority of the infected cells.

Conclusion: This report suggests a potential link between EBV infection and T-PLL and provides new information about the potential contribution of EBV in the initiation or maintenance of T-PLL.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Epstein-Barr virus (EBV) was first reported as the etiological agent of Burkitt’s lymphoma in 1964.5 Since then, EBV has been associated with many human pathologies including nasopharyngeal carcinoma which is a highly prevalent and aggressive cancer in Southeast Asia, infectious mononucleosis, and AIDS- and transplant-related B cell lymphomas.18 EBV has also been linked to T-cell lymphomas, Hodgkin’s lymphoma, and NK leukemia or LGL leukemia,12,31 supporting the concept of a wide spectrum of EBV-associated disorders. The EBV genome encodes for a number of latent proteins such as EBNA1–3, LMP 1, 2 and others which are selectively expressed during different types of viral latency.27 Recent studies have demonstrated that EBNA2, EBNA-LP, EBNA3A, EBNA3C and LMP1 are important for cell transformation.27 Furthermore, different strategies are utilized by these latent antigens to drive virus-associated transformation or carcinogenesis among the EBV-associated disorders.

Although EBV is linked to a number of different types of tumors, the association between this virus and T-cell prolymphocytic leukemia (T-PLL) has not been previously explored. T-PLL, formerly categorized as T-cell chronic lymphocytic leukemia, is a rare and aggressive hematologic malignancy.2,8,16,29,30 It is a distinctive type of leukemia that is derived from T-cells at the intermediate stage of differentiation between a cortical thymocyte and a mature peripheral blood T-cell.8,29,30 Patients with T-PLL often have a complex karyotype with recurrent alterations that involve chromosomes 14, 11, and 8. Rearrangements of chromosome 14q32.1 through inversion [inv(14)(q11;q32)] and translocation [t(14;14)(q11;q32)] are the most common cytogenetic abnormalities reported in T-PLL.4,5 As a result of these rearrangements, TCL1, a gene that is physiologically expressed in CD4/CD8 double-negative thymocytes, is deregulated.16,17,31 Typically, the TCL1 locus rearranges with the T-cell receptor (TCR) α/β chain locus in the above mentioned rearrangements, but it can also rearrange with the TCR-β chain locus on chromosome 7 in another translocation [t(7;14)(q35;q32.1)].16,21,22 Furthermore, several patients with mature T-cell leukemias have
the translocation [(t(X;14)(q28;q11)], which results in the rearrangement of the MTCP1 gene (a member of the TCL1 gene family) located at Qq28. Therefore, chromosomal rearrangements in T-PLL juxtapose TCL1 and MTCP1 to the TCR loci and lead to their activation. Recent genomic analyses of the 1q43.2.1 breakpoint region has revealed three additional genes, TCL1b, TNG1 (T-CL1 neighboring gene 1), and TNG2. These have an expression pattern similar to TCL1 in that they are not expressed in normal T-cells, but are expressed in T-PLL cell lines and cells from patients with T-PLL.2,12,28 Activation of TCL1 through hypomethylation of its promoter has also been described.34 These molecular events related to the above chromosomal aberrations are believed to play a casual role in the pathogenesis of T-PLL.

EBV infects the vast majority (>90%) of healthy adults and can infect T-cells in vivo.33 In addition, the infection of T-cells appears to convey an increased risk of malignancy such as lymphoma. This raised the possibility that EBV might also contribute to the development of another hematologic malignancy, T-PLL. A 70 years old male T-PLL patient was observed with an increased titer of EBV antigens, suggesting that there was a high level of EBV viremia and that EBV infection might be associated with this rare malignancy. In this report, we sought to determine if EBV was present in the tumor cells obtained from this EBV-positive patient with T-PLL. We found that EBV DNA can be continuously detected in the cultured tumor cells and that the majority of the essential EBV latent genes were expressed in these cells suggesting a latency pattern that is geared toward growth of the latently infected cells.

2. Methods

2.1. Patient

The study patient was a 70 years old male diagnosed at the Hospital of the University of Pennsylvania with T-cell prolymphocytic leukemia (T-PLL) (IRB#706586). He had an increase in the EBV titer which was determined by detection of the antibody against viral capsid antigen (VCA). The diagnosis was primarily based on FACS analysis of the bone marrow aspirate as well as a peripheral blood sample. The combined clinical, morphologic (absence of flower cells) and immunophenotypic features were also consistent with T-cell prolymphocytic leukemia.

2.2. Lymphocyte isolation and cell culture

Primary lymphocytes were harvested from peripheral blood mononuclear cells using a Lymphoprep gradient as described previously.12 The enriched lymphocyte population was washed and plated at 50,000 cells in 150 µl of complete medium per well in a 96-well tissue culture plate. The cells were grown and maintained in RPMI 1640 medium (HyClone, Inc., Logan, UT) supplemented with 2 mM L-glutamine, 5 µg of gentamicin per ml, and 10% heat-inactivated fetal bovine serum. Ninety-six-well plates were incubated at 37 °C with 5% CO2. The plates were treated once every 8 days with a fresh 100 µl of complete medium.

2.3. DNA lystate preparation and PCR analysis

Approximately 50,000 T-PLL cells derived from the patient’s peripheral blood cells were collected and were centrifuged at 2000 rpm for 5 min. The cell pellet was washed with phosphate-buffered saline (PBS) twice and resuspended in 50 µl of 0.2 × PBS, heated to 95 °C for 15 min, and then switched to 56 °C for 1 h with proteinase K treatment (10 mg/ml). The enzyme was then inactivated at 95 °C for 30 min. A 5-µl portion of the lystate was used for PCR amplification of EBV-specific regions for 40 cycles, and standard protocols were followed using primers indicated in Table 1. DNA was also prepared from the same number of control BJAB cells. PCR was performed by heating at 95 °C for 5 min and subsequently for 40 cycles, each cycle including 95 °C for 1 min, 56 °C for 1 min, and 72 °C for 2 min, followed by further incubation at 72 °C for 10 min, in a PTC-100 programmable thermal cycler (MJ Research, Inc., Waltham, MA). Five microliters aliquots of PCR products were then assayed by electrophoresis on a 2.0% ME-agarose gel and visualized by ethidium bromide.

2.4. Immunofluorescence assay

Immunofluorescence analyses were performed as described previously.12 One million T-PLL cells were collected and briefly fixed using a 1:1 methanol and acetone mix ice cold at −20 °C, blocked in the appropriate serum, and then incubated with the pre-cleared patient serum or specific primary antibody for EBNA3C and LMP1 for 1 h. Cells were washed and then further incubated with the appropriate secondary antibody conjugated to fluorescein isothiocyanate at 1:1000 dilutions in PBS for 1 h. Slides were washed and visualized with an Olympus X710 inverted fluorescence microscope (Olympus, Inc., Melville, NY) and photographed using a digital Pix-eyff camera and software (Cooke, Inc., Warren, MI).

2.5. Western blotting

T-PLL from the patient and an EBV-negative cell BJAB control were lysed with 300 µl of reporter lysis buffer (Promega, Inc., Madison, WI), respectively, and 40 µl of this lysate was used. Briefly, lysates were boiled in SDS-loading buffer, fractionated by SDS-PAGE and transferred to a 0.45 mm nitrocellulose membrane. The membranes were then probed with patient serum absorbed against B cell antigens or EBV-specific antibodies followed by incubation with appropriate infrared-tagged secondary antibodies and viewed on an Odyssey imager (LiCor, Inc., Lincoln, NE).

2.6. FACS analysis

For the determination of the expression of CD3 positive cells, one million cells from patient samples, negative controls (B-cell) and antibody controls were incubated with rabbit polyclonal PE-tagged anti-CD3 antibody (2 mg/ml in PBS containing 1% BSA) for 30 min at room temperature. After thoroughly washing with 1 × PBS the cells were incubated with FITC-conjugated anti LMP1 mouse monoclonal antibody for 30 min. Cells were then washed and analyzed on a flow cytometer (Becton Dickinson, San Diego, CA) equipped with 488 nm Argon laser light source and a 623-nm band pass filter for FITC fluorescence. For determination of LMP-1 signals, cells were fixed in 1% formaldehyde followed by permeabilization with 0.05% Triton X 100 at room temperature. The cells were washed with 1 × PBS 3 times at 5 min intervals. In this fixing procedure the cell membrane remains intact and the LMP1 antibody was allowed

Table 1

<table>
<thead>
<tr>
<th>Amplified region</th>
<th>Primers sequences</th>
<th>Primer co-ordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>BamHI C fragment</td>
<td>5′GCAAGGGCTGCCAAAGTAGA3′</td>
<td>11095–11855</td>
</tr>
<tr>
<td>BamHI E fragment</td>
<td>5′TACTCCACCCCAGCCAAAC3′</td>
<td>99939–100091</td>
</tr>
<tr>
<td>BamHI W fragment</td>
<td>5′CCAGACAGGAGCAATTGTC3′</td>
<td>17374–17502</td>
</tr>
</tbody>
</table>

to gain access to the intracellular compartment. A total of 10,000 events were acquired for analysis using CellQuest software (Becton Dickinson, San Diego, CA). Cells were gated as described earlier, and histogram plots of PE fluorescence (x-axis) versus counts (y-axis) were shown as a fraction of logarithmic fluorescence intensity. A dot plot of PE fluorescence (x-axis) versus FITC (y-axis) was also determined as a fraction of logarithmic fluorescence intensity.

3. Results

3.1. Growth of T-cell prolymphocytic leukemia cells in vitro

The diagnosis was based on the FACS analysis of the bone marrow aspirate as well as the peripheral blood sample. The results of FACS on the bone marrow demonstrated an aberrant expanded population (70% of total events) of CD2, CD3, CD5, CD7, CD8, and CD25 T-cells. These cells were CD1a, CD4, CD16, CD30, CD56, CD57, TdT and gamma-delta negative. In addition, B-cells were essentially absent (Table 2). The FACS performed on peripheral blood demonstrated an essentially identical immuno-profile and the markedly high CD7 intensity was not reduced in comparison to other pan-T antigens. The combined clinical, morphologic (absence of flower cells) and immuno-phenotypic (CD8 positivity, without loss of CD7 expression) features were consistent with T-PLL (Table 2).

Mononuclear cells preparations from the patient were cultured. These cultures initially contained the T-PLL tumor cells as well as other normal lymphocytic cells. The normal cells gradually died within a month and only large tumor cells remained as large clumps suggesting a transformed phenotype (Fig. 1A). Microscopic findings of the hematoxylin and eosin (HE) stained slides of needle aspirate showed many mature lymphocytes (Fig. 1B). The surface of some of the lymphoid cells showed enhanced ruffling (middle panel arrow). These were identified as atypical lymphocytes that continued to proliferate in culture over time. The right panel displays cells with distorted nuclei (right panel arrow). These cells were slightly smaller but their morphology was consistent with PLL (Fig. 1B).

3.2. Confirmation of EBV sequence in the T-PLL cells

We performed PCR amplification of different regions of EBV genome to determine if there was EBV infection of the T-PLL cells derived from the patient’s peripheral blood cells which were predominantly T-cells with an almost absent B cell population. Genomic DNA was prepared from the equal numbers of T-PLL cells which were continuously grown for 6 months in culture; EBV positive cell line (BC1), an EBV-negative cell line (BJAB), and the peripheral blood cells of the same patient. These were subjected to PCR analysis. Fig. 2 demonstrates strong amplification of EBV target sequence in the T-PLL sample (Fig. 2). There was also a relatively lower amplification in the peripheral blood sample, suggesting that only a fraction of the circulating T-cells which made up the PBMC were infected with EBV in the context of the total PBMC population.

Table 2

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Major cell specificity</th>
<th>Reactivity (Bm)</th>
<th>Reactivity (PB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD1a</td>
<td>Thymocyte</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>CD2</td>
<td>Pan T, NK</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD3</td>
<td>Pan T</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD4</td>
<td>T-helper, Monocyte</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>CD5</td>
<td>T, subset of B</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD7</td>
<td>T, NK</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD8</td>
<td>T-cytotoxic/Suppressor</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>CD16</td>
<td>NK, neutrophils</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>CD25</td>
<td>pre-B, pre-T</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD30</td>
<td>Activated T, B</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>CD56</td>
<td>NK</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>CD57</td>
<td>NK, T-cytotoxic</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>TdT</td>
<td>B</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>γδ</td>
<td>B</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>CD19</td>
<td>B</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Fig. 1. (A) The morphology of the T-PLL cells derived from the patient’s periphery blood cells. The lymphocytes were isolated from the periphery blood of the T-PLL patient and then cultured in RPMI1640 supplemented with 10% FBS. The cells were continuously cultured for approximately 13 months. The left picture shows the morphology of the cells in the culture at first day, the size of the cells is almost identical and it is hard to find big size tumor cells. The middle picture shows that the large size tumor cells are visible and the right one shows a typical image obtained for these T-PLL cells. (B) The morphology of the bone marrow sample from the patient which was stained with Haematoxylin and Eosin. There are many mature lymphocytes, and large atypical lymphocytes with small cytoplasm surrounding irregular nuclei, clumped chromatin and distinct nucleoli shown.
3.3. EBV antigens were expressed in T-PLL cells

These results indicate that the EBV genomic DNA was present in the T-PLL tumor cells derived from the patient. To further confirm this and to detect any EBV antigens in these cells, we prepared cell lysates from the cultured T-PLL tumor cells as well as EBV-negative BJAB cells, for Western blotting. First, we used the serum prepared from the patient as a primary antibody. This serum was pre-treated by incubation with BJAB cell lysate for 72 h. Since the patient was EBV positive, there should be a broad spectrum of antibodies against different EBV antigens.\(^{1,2}\) The Western blotting demonstrated that the T-PLL cell contained proteins corresponding to EBNA3C, EBNA2, EBNA1 and probably LMP1, based on the molecular sizes, respectively (Fig. 3A). Although these bands were specific were absent in the control BJAB cells, the molecular size alone was not sufficient to identify specific antigens. To confirm the specificity of a number of these EBV antigens and to determine if expression of the EBV oncoprotein LMP1 was present, the membrane was stripped completely of signal and then re-probed with specific monoclonal antibodies against EBNA3C (Fig. 3B) and LMP1 (Fig. 3C), respectively. These two proteins were chosen as targets as these antibodies have greater specificity and were available in our lab.\(^{1,11}\) The results demonstrated that at least these two major latent EBV oncoproteins were clearly expressed in the T-PLL cells derived from this patient. We did not further determine expression of EBNA2 or LMP1 with specific antibodies as they were unavailable in our laboratory.

To corroborate the Western blotting data above, we further employed immunofluorescence assays to determine the expression of EBV antigens in the T-PLL cells. We harvested the T-PLL cells from the growing culture at 6 months when there were only large size tumor cells. EBV-negative BJAB cells and the EBV-positive lymphoblastoid cell line (LCL) were used as controls. There were no detectable levels of EBNA3C or LMP1 expression in BJAB cells (Fig. 4A and B, top panels). In contrast, there were approximately 90% of LCL cells contained EBNA3C or LMP1 (Fig. 4A and B, middle panels). Approximately 80% of T-PLL cells were EBNA3C positive, and 40% of T-PLL cells LMP1 positive (Fig. 4A and B, bottom panels). This suggests that the majority of the T-PLL cells were positive for EBV infection as indicated by the positive EBNA3C signals.

4. Discussion

T-PLL is a rare type of post-thymic T-cell neoplasm, the etiology of which is unknown.\(^{2,3}\) So far, it is widely accepted that certain chromosomal translocations are the common molecular feature of this tumor.\(^{24}\) However, the cause of these chromosome changes remains unclear. Unlike Adult T-cell leukemia or lymphoma, the human T-lymphotrophic viruses I and II (HTLV-I/II) are invariably negative by both serology and polymerase chain reaction (PCR) in T-PLL patients and a positive result for these viruses excludes this diagnosis.\(^{10,20}\)

Epstein-Barr virus (EBV), discovered more than 40 years ago from a Burkitt’s lymphoma biopsy, was the first virus to be directly
EBV has two distinct life cycles in the human host; a lytic form of infection that produces new infectious virions, and a latent form of infection that allows the virus to persist in a dormant state for the lifetime of the host. EBV has evolved a life cycle that mimics the natural differentiation pathway of antigen-activated B cells, giving the virus access to its site of latent infection, the resting memory B cells. By steering infected cells through the various stages of lymphocyte differentiation, EBV is able to enter a cell type suitable for long-term latent persistence and periodic reactivation. However, its presence in various stages of B-cell development, and its ability to infect other cell types such as epithelial cells and T-cells could have pathogenic consequences, and may also contribute to the development of a diverse group of leukemias, lymphomas and carcinomas.

This T-PLL patient with a high EBV titer allowed the possibility that the virus may be involved in the development of T-PLL. To further confirm this observation, a link between EBV infection and the T-PLL tumor cells must be established from multiple patients. In this report, we continuously cultured patient derived T-PLL cells in vitro for approximately a year with loss of continual growth after this period. During the culture of these T-PLL cells in vitro, we found that their doubling time was approximately 48–72 h in the first 2 months after the enhanced population of T-PLL cells survived. However, after this initial 60 days in culture the growth rate of the cells slowed with the supplement of 10% FBS and glutamine in the medium. The growth of these cells was eventually discontinued after 13 months post culture. Improved conditions for culturing T-PLL cells will be necessary for establishment of a T-PLL cell line in the future. Additionally, it would be important to generate multiple cell lines from a number of patients for comparative analyses.

We detected EBV infection of these cells at different stages of culture. Expression of two major latent EBV antigens, EBNA3C and LMP1 was detected in these cells. Therefore, it is likely that EBV had established a type III latency in these cells as expression of EBNA3C is likely to also be seen with expression on EBNA1P and EBNA2. We also noticed that the percentage of EBNA3C-expressing cells and LMP1-expressing cells was also varied. This suggests that the T-PLL cells may have expanded from multiple infected T-cells during development of the leukemia and that these cells were likely to be polyclonal in nature as observed by the different EBV latent antigen expression. It would be interesting to determine if there may be a unique type of latency on these cells distinct from type II or type III based on latent antigen expression.

This report provides new evidence that EBV infection may play a role in development of T-PLL. Additional effort will be needed to further focus on the systemic characterization of EBV gene expression profiles in T-PLL cells from multiple patients, and the role of EBV in contributing to the oncogenic process of T-PLL cells.
were subjected to FACS analysis. As shown, the percentages of the cell populations
blood cells are CD3 positive (A) and dual positive for CD3 and LMP1 (B). The cells were

Fig. 5.

Acknowledgments

This work was supported by grants from the Leukemia and Lymphoma Society of America and public health service grants from the NCI CA072510 and CA091792 and from NIDCR DE014136-04 and

References

33. Young LS, Murray PG. Epstein-Barr virus and oncogenesis: from latent genes to EBNA3C regulates transcription, cell transformation and cell migration. Front Biosci 2002;7:704–16.

34. Young LS, Rickinson AB. Epstein-Barr virus: 40 years on.