Different mechanisms of hepatitis C virus RNA polymerase activation by cyclophilin A and B in vitro

Leiyun Weng a, Xiao Tian a, Yayi Gao a, Koichi Watashi b, Kunitada Shimotono c, Takaji Wakita b, Michinori Kohara d, Tetsuya Toyoda a,d,c,*

a Unit of Viral Genome Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 411 Hefei Road, 200025 Shanghai, People’s Republic of China
b Department of Virology B, National Institute of Health, 1-23-1 Toyama, Shinjuku, Tokyo 132-8640, Japan
c Chiba Institute of Technology, 2-17-1 Tsudamura, Narashino, Chiba 275-0016, Japan
d Department of Microbiology and Cell Biology, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo 156-8506, Japan
e Choju Medical Institute, Fukushima Hospital, 19-14 Azanakayama, Noyori-cho, Toyoashi, Aichi 441-8124, Japan

⁎ Corresponding author at: Choju Medical Institute, Fukushima Hospital, 19-14 Azanakayama, Noyori-cho, Toyoashi, Aichi 441-8124, Japan. Tel.: +81 532 46 8940.
E-mail address: toyoda_tetsuya@yahoo.co.jp (T. Toyoda).

Abstract

Background: Cyclophilins (CyPs) are cellular proteins that are essential to hepatitis C virus (HCV) replication. Since cyclophilin A was discovered to inhibit HCV infection, the CyP pathway contributing to HCV replication is a potential attractive stratagem for controlling HCV infection. Among them, CyPA is accepted to interact with HCV nonstructural protein (NS) 5A, although interaction of CyPB and NS5B, an RNA-dependent RNA polymerase (RdRp), was proposed first.

Methods: CyPA, CyPB, and HCV RdRp were expressed in bacteria and purified using combination column chromatography. HCV RdRp activity was analyzed in vitro with purified CyPA and CyPB.

Results: CyPA at a high concentration (50× higher than that of RdRp) but not at low concentration activated HCV RdRp. CyPB had an allosteric effect on genotype 1b RdRp activation. CyPB showed genotype specificity and activated genotype 1b and J6CF (2a) RdRps but not genotype 1a or JFH1 (2a) RdRps. CyPA activated RdRps of genotypes 1a, 1b, and 2a. CyPB may also support HCV genotype 1b replication within the infected cells, although its knockdown effect on HCV 1b replicon activity was controversial in earlier reports.

Conclusions: CyPA activated HCV RdRp at the early stages of transcription, including template RNA binding. CyPB also activated genotype 1b RdRp. However, their activation mechanisms are different.

General significance: These data suggest that both CyPA and CyPB are excellent targets for the treatment of HCV 1b, which shows the greatest resistance to interferon and ribavirin combination therapy.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Hepatitis C virus (HCV), which belongs to the Flaviviridae family, has a positive-strand RNA genome, and its replication is regulated by viral and cellular proteins [1]. The genome encodes a large precursor polyprotein that is cleaved by host and viral proteases to generate at least 10 functional viral proteins: core, envelope 1 (E1), E2, p7, nonstructural protein 2 (NS2), NS3, NS4A, NS4B, NS5A, and NS5B [2]. NS5B is an RNA-dependent RNA polymerase (RdRp) [3–5].

HCV frequently establishes a persistent infection that leads to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma [6,7]. More than 170 million individuals worldwide are infected with HCV [8], and the challenge of developing HCV treatment continues. First, combination therapy with pegylated interferon α (Peg-IFNα) and ribavirin led to a sustained virological response (SVR) in approximately 55% of patients infected with any HCV genotype and 42–46% of patients with genotype 1 [9,10]. However, many patients could not tolerate the serious adverse effects. Triple therapy consisting of an NS3/4A protease inhibitor (boceprevir or telaprevir), Peg-IFN (α-2a or α-2b), and ribavirin was then introduced, and it has become the standard regimen for genotype 1 infection. SVR improved significantly (from 63% to 75%), and the treatment duration decreased from 12 to 6 months [11,12]. However, triple therapy is more toxic than combination therapy [13].

Nonimmunosuppressant cyclosporine A (CsA) analogues/CyP inhibitors such as DEBIO-025 (Alisporivir) [14], NIM811 [15], and SCY-635 [16] are also the most expected candidates for use as anti-HCV drugs because their resistance selection is rare compared with other direct-acting antiviral agents, and the HCV resistant to
CyP inhibitors acquired mutations that allowed for reduced dependence on CyPs [17,18]. CyP was originally discovered as a cellular factor with high affinity for CsA [19]. CyPs comprise a family of peptidyl prolyl cis/trans-isomerases (PPI) that catalyze the cis–trans interconversion of peptide bonds. The role of human CyPs as cellular cofactors in HCV replication was first suggested upon discovery of the anti-HCV effect of CsA [23–26]. Although the completion of a binding assay and the mapping of resistance initially suggested that NS5B was a viral target for CsA [27–29], recent papers have pointed to CyPA and CyPSA as the central virus–host interaction involved in HCV replication [30–36]. Despite this unfavorable evidence, we analyzed the effect of CyPA and CyPB on HCV RdRp of various genotypes in vitro and found differences in genotype specificity and the mechanism of HCV RdRp activation.

2. Materials and methods

2.1. Purification of HCV RdRp

HCV RNA RdRps with C-terminal 21 amino acid deletion of 1a (H77 and RMT), 1b (HCR6, NN, and Con1), and 2a (JFH1 and J6C) were expressed in E. coli Rosetta/plysS and purified as described previously [37–40]. The purified HCV RdRps (5 μM, >95% pure) were stored in 20 mM Tris–HCl (pH 8.0), 500 mM NaCl, 1 mM ethylenediaminetetraacetic acid (EDTA), 5 mM diithiothreitol (DTT), 5% glycerol, and 1 mM phenylmethanesulfonyl fluoride (PMSF) at –80 °C. The yield of HCV RdRps is approximately 1.7 mg from a 1-L bacterial culture. The purified HCV RdRps were as shown in Fig. S1 of Weng et al. [38]. The protein purities were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis (SDS-PAGE), using ImageJ 1.46 (http://rsbweb.nih.gov/ij/).

2.2. Construction of CyP-expressing plasmids

Human CyPA and CyPB were cloned from total RNA extracted from 293T cells, using a reverse transcription-polymerase chain reaction (RT-PCR) kit (Takara, Dalian, China) as published previously [29]. After being digested with BamH1 and EcoRI, they were cloned into the same site of pGEX-6P-3 (GE Healthcare, Bucks, UK), resulting in pGEXCyPA and pGEXCyPB, respectively. CyPBAPPi, the enzymatic inactive mutant of CyPB, was PCR cloned into pGEX-6P-3 from pCMV-CyPBAPPiFL [29], resulting in pGEXCyPBAPPi. CyPAAPPi was produced by the introduction of the R55A and F60A mutations using a QuickChange Site-Directed Mutagenesis Kit (Stratagene, St. Clara, CA, USA) and primers (5′-GTTCTGCTTTTCAGCGCATATTCCAGGGG CCAAGTGTCAGGTG-3′ and 5′-CACCCGTACACATGGCCCGTGAATAA TGGCCTGAAAGCGAGAAC-3′).

2.3. Purification of CyPs

E. coli Rosetta were transformed using pGEXCyPA, pGEXCyPAAPPi, pGEXCyPB, and pGEXCyPBAPPi. GST-tagged CyPA, CyPB, CyPAAPPi, and CyPBAPPi were induced with 1 mM isopropyl β-D-1-thiogalactopyranoside at 18°C for 4 h. The bacteria were harvested and stored at –20°C. After thawing on ice, the bacteria were lysed in 4 packed cell volumes of phosphate-buffered saline, 0.1% Triton X-100, 1 mM EDTA, 1 mM DTT, and 1 mM PMSF. After being clarified by centrifugation at 10,000×g for 30 min at 4°C and filtered through a 0.45-μm nitrocellulose filter, the extract was incubated with Glutathione Sepharose 4B (GE Healthcare) for 30 min at 4°C. After the resin was washed with 50 mM Tris–HCl (pH 8.0), 500 mM NaCl, 1 mM EDTA, 1 mM DTT, and 1 mM PMSF, the GST-CyP was eluted using 50 mM Tris–HCl (pH 8.0), 500 mM NaCl, 1 mM EDTA, 1 mM DTT, and 10% glycerol. The eluted GST-CyP was diluted to 50 mM NaCl and applied to a MonoQ (GE Healthcare) in 20 mM Tris–HCl (pH 9.0), 50 mM NaCl, 1 mM EDTA, 1 mM DTT, and 10% glycerol. GST-CyPB and GST-CyPBAPPi were chromatographed using a continuous NaCl gradient of 50–1000 mM. The purified CyPs were stored at –20°C.

2.4. In vitro HCV transcription with CyPs

In vitro HCV transcription with CyPs was done as previously described [37–40]. Briefly, the indicated amounts of the CyPs were incubated in 50 mM Tris–HCl (pH 7.5), 200 mM mononopotasium glutamate, 3.5 mM MnCl2, 1 mM DTT, 0.5 mM GTP, 200 mM of a 184-nt in vitro transcribed model RNA template (SL12–1S), 100 U/mL of human placental RNase inhibitor, and 100 nM HCV RdRp at 29°C for 30 min. After preincubation, RdRp was incubated for an additional 90 min with 50 μM ATP, 50 μM CTP, or 5 μM (α-32P)UTP. The RNA products were analyzed using 6% PAGE containing 8 M urea after being purified by phenol/chloroform extraction and ethanol precipitation. The amount of RNA products was analyzed using Typhoon Trio (GE Healthcare).

2.5. RNA filter-binding assay with CyPA and CyPB

An RNA filter-binding assay with CyPA and CyPB was performed as previously described [37,38]. Briefly, [32P]-SL12–1S was incubated in 25 μL of 50 mM Tris–HCl (pH 7.5), 200 mM mononopotasium glutamate, 3.5 mM MnCl2, 1 mM DTT, and 5 pmol of HCV RdRp with 375 pmol (75 ×) of CyPA and 25 pmol (5 ×) of CyPB at 29°C for 30 min.

2.6. Chemicals and isotopes

[α-32P]UTP (800 Ci/mmol, 40 μCi/mL) was purchased from PerkinElmer Life Sciences (Waltham, MA, USA). The nucleotides were purchased from GE Healthcare. The human placental RNase inhibitor T7 RNA polymerase and PrimeSTAR HS DNA polymerase were purchased from Takara. The bacteria were purchased from Novagen (Merck Chemicals, Darmstadt, Germany).

2.7. Statistical analysis

The statistical data were evaluated using Student’s t test, with p < 0.05 indicating statistical significance.

3. Results

3.1. Purification of CyPA and B

First, glutathione S-transferase (GST)-tagged CyPA, CyPB, the PPI inactive CyPA (CyPAAPPi), and CyPB (CyPBAPPi) were purified using Glutathione Sepharose 4B affinity chromatography. CyPA and CyPAAPPi were further purified through a Superdex 200 column (Fig. S1). After the Superdex 200 gel filtration, to remove the contaminating nucleic acids, CyPB and CyPBAPPi were further purified through MonoQ anion exchange chromatography by a continuous NaCl gradient of 50–1000 mM because CyPB has a strong affinity for nucleic acids. Each was eluted with 210–385 mM NaCl (Fig. S2). The purification scheme and purified CyPs are shown in Fig. 1. The yields of CyPA and CyPAAPPi were approximately 3 mg from a 1-L bacterial culture. CyPA and CyPAAPPi were >95% pure and stored at 5 mg/mL in 20 mM Tris–HCl (pH 7.5), 500 mM NaCl, 1 mM EDTA, 1 mM DTT, and 10% glycerol. CyPB and CyPBAPPi were stored at 5 mg/mL in 20 mM Tris–HCl (pH 9.0), 500 mM NaCl, 1 mM EDTA, 1 mM DTT, and 10% glycerol.
and 10% glycerol. The yields of CyPB and CyPBΔPPI were approximately 1 mg from a 1-L bacterial culture. The purities of CyPB and CyPBΔPPI were >95% and >90%, respectively.

3.2. HCV 1b and JFH1 (2a) transcription in vitro with CyPA and CyPB

The dose–response effects of CyPA and CyPB were examined using an in vitro transcription system of HCR6 (1b) and JFH1 (2a) RdRp wild type (wt). CyPA and CyPB were added to the optimal HCV in vitro transcription condition while the RNA synthesis was in the log phase [4,37]. RdRp (100 nM) was incubated with 0, 50 (ratio to RdRp: 0.5×), 100 (1×), 200 (2×), 500 (5×), and 1000 nM (10×) CyPA and CyPB, GST, or bovine serum albumin (BSA) in GTP (the initiating nucleotide) and an RNA template for 30 min, followed by elongation with ATP, CTP, and UTP for 90 min. CyPA enhancement was further tested using 2 (20×), 5 (50×), 7.5 (75×), and 10 (100×) μM because the enhancement effect of CyPA under 1 μM (10×) was unclear. Fig. S3 shows the autoradiography of HCV HCR6 (1b) and JFH1 (2a) RdRpwt with CyPA and CyPB, the graphs of which were drawn using the data from 3 independent experiments (Fig. 2).

The CyPA activation of both RdRps showed 2 reaction speeds. The first-order ratio of CyPA to HCR6 (1b) RdRpwt=50× is fitted as a linear regression curve, the equation for which is \(y = 0.07x \) (CyPA-to-RdRp ratio) + 0.7. The linear regression curve fitting of the ratio >50× is \(y = 0.4x \) (CyPA-to-RdRp ratio) − 17 when calculated from 3 points. That of CyPA to JFH1 (2a) RdRpwt is fitted to a similar linear regression, \(y = 0.09x \) (CyPA-to-RdRp ratio) + 0.9 (the CyPA-to-RdRp ratio<50×). HCV6R (1b) and JFH1 (2a) RdRps were activated by 100× CyPA to 25× ±0.2- and 19±1-fold, respectively.

The CyPB activation of HCR6 (1b) RdRpwt occurred in a dose-dependent manner and fitted a sigmoid curve, and the enhancement effect reached a plateau (9.4×) at the ratio of 5×. Neither GST nor BSA enhanced HCR6 (1b) RdRpwt. CyPB, GST, and BSA did not enhance JFH1 (2a) RdRpwt (<1.5×) at the concentrations described earlier.

3.3. Effect of the PPI inactive mutant proteins of CyPA and CyPB

CyP has PPI activity. To test the contribution of PPI activity to HCV HCR6 (1b) and JFH1 (2a) RdRpwt activation, the activation effect of the PPI inactive mutant proteins, CyPAΔPPI at 100× (10 μM) and CyPBΔPPI at 2× (200 nM), were tested together with 100× (10 μM) GST and BSA (Fig. 3). CyPA enhanced JFH1 (2a) RdRpwt 17.6×, whereas CyPAΔPPI enhanced it 16.2×. This difference is statistically significant (Student’s t test, p<0.05). CyPA enhanced HCR6 (1b) RdRpwt activity 27.7×, whereas CyPAΔPPI enhanced it 16.0×. BSA slightly inhibited both RdRps at the same concentration in this experiment. As shown in Fig. 2D and C, it can be concluded that BSA has no effect on HCV transcription. GST enhanced JFH1 (2a) RdRpwt activity 5.0×, but it did not affect HCR6 (1b) RdRpwt activity. CyPB enhanced HCR6 (1b) RdRpwt activity 2.3×, whereas CyPBΔPPI enhanced it 1.7×. This difference is also statistically significant (Student’s t test, p<0.05). JFH1 (2a) RdRpwt was not activated by CyPB or CyPBΔPPI.

3.4. CyP activation steps of HCV transcription

The HCV transcription steps of CyP enhancement were analyzed by the sequential addition of CyPs during in vitro transcription (Fig. 4). CyPA enhanced HCR6 (1b) and JFH1 (2a) RdRpwt, whereas CyPB enhanced HCR6 (1b) RdRpwt when HCV RdRps were incubated with them from the start of transcription (initiation). The CyP effect was then tested after their addition during the elongation period after HCV RdRps was initiated with GTP. CyPA (100×: 10 μM) and CyPB (5×: 500 nM) were added to HCV RdRps after the 30-min incubation with GTP, when 3 GTPs were incorporated at the 5′ end of the products. CyPB did not enhance HCR6 (1b) or JFH1 (2a) RdRp when added during the elongation period, although it enhanced HCV RdRp when added at the start of transcription. CyPA enhanced HCR6 (1b) and JFH1 (2a) RdRp activity only 1.6× (Student’s t test, p<0.05) and 2.1× (p<0.01), respectively, when added during the elongation step. These results suggest that CyPA and CyPB activated only the transcription initiation step of HCV RdRps.
The effects of 75× CyPA and 5× CyPB on the RNA-binding activity of HCR6 (1b) and JFH1 (2a) RdRp were then tested (Fig. 4E). The effects of HCR6 (1b) and JFH1 (2a) RdRp with CyPA were 10.1-±0.56- and 6.6-±0.68-fold of that without CyPA, respectively. The effect of HCR6 (1b) RdRp with CyPB was 3.1-±0.3-fold of that without CyPB. The RNA-binding activity of HCV RdRps was thus enhanced by the addition of CyPA and CyPB.

3.5. Effect of CyP activation on RdRp of various HCV genotypes

The CsA sensitivity differed among the HCV genotypes [41]. Therefore, we tested the effects of CyPA and CyPB activation on NN (1b), H77 (1a), RMT (1a), and J6CF (2a) RdRp (Fig. 5). RdRp activity was compared with and without 50× (5 μM) CyPA and 5× (500 nM) CyPB. At their respective concentrations, CyPA activated all of the tested HCV RdRps by 3.9–5.3×, but CyPB activated only 1b RdRps (8–10×). CyPB slightly activated J6CF (2a) RdRp (approximately 4×), but it did not activate the 1a or JFH1 (2a) RdRps (1.4–1.8×).

4. Discussion

Since CsA was discovered to inhibit HCV infection [23–26], the CyP pathway contributing to HCV replication has been proposed as a potential stratagem for controlling HCV infection. Reports about the roles of CyPA in HCV replication via NS5A have been accumulating [33–35,42–44]. However, the effect of CyP inhibitors varied on the RNA-binding activity of NS5B [41,45], and DEBIO-025 decreased CyPB levels in patients [46]. Controversial results of CyPA and CyPB knockout experiments on HCV replicon activity were reported [29,30,47]. Therefore, the effects of CyPA and CyPB on HCV RdRp were carefully analyzed again in vitro.

In this study, we demonstrated that CyPA and CyPB activated HCV 1b RdRp in vitro by completely different kinetics using purified CyPs
and HCV RdRs (Fig. 2), which indicated that the mechanism of their HCV RdRp activation differed despite their similar structures. Kinetic analysis of CyPA on HCR6 (1b) and JFH1 (2a) RdRp indicated that it had a similar activation mechanism on both HCV RdRps. CyPA did not activate HCV RdRp at low concentrations, but it did activate it at >50× molar excess to it. The unusual dose of CyPA activating HCV RdRp (Fig. 2) postulates that HCV RdRp may be surrounded by CyPA in vitro and factors involving CyPA and HCV RdRp interaction, such as NS5A, in the HCV replication complex of the infected cells because the interaction of CyPA and HCV RdRp was weak (Fig. S4).

Although some controversial results were obtained from those of Heck et al. [54], the studies agree that CyPB also activated HCV 1b RdRp in vitro. The activation kinetics of CyPB on HCR6 (1b) and JFH1 (2a) RdRp indicated that it had a similar activation mechanism on both HCV RdRps. CyPB activated HCV RdRp as a cofactor and directly activate HCR6 (1b) RdRp. The HCV RdRp–CyPB complex was likely to interact more with CyPB, and its activation plateaued at the CyPB/RdRp ratio of 5:1 (Fig. 2C). The CyPB activation curves of Heck et al. [54] also plateaued. These data from the 2 independent groups support the weak interaction between CyPB and HCV 1b RdRp (Fig. S4).

CyPA did not show genotype specificity in the current study (Fig. 5A), a finding that agrees with those of CyPA knockdown, DEBIO-025, and CsA experiments [30,43,55]. CyPB activation showed genotype specificity (Fig. 5B) [54]: CyPB activated 1b and J6CF (2a) RdRp but did not activate 1a or JFH1 (2a) RdRp. Both reports agreed with the finding that JFH1 (2a) subgenomic replicon was independent of CyPB [41]. Although mutations accumulated in the NS5A region of CsA- or DEBIO-025-resistant HCV replicons, some mutations were found in the NS5B region [18,27,28,33,45].

Another controversial result between that of Heck et al. [54] and ours is the Mg2+-dependency of the CyPB activation. The Mg2+ concentration in cells is 14–20 mM, and Mg2+ ions are distributed almost equally throughout the nuclei, mitochondria, and cytosol/endoplasmic reticulum [56]. The Mn2+ concentration in cells varies from report to report [57,58]. The optimal Mn2+ and Mg2+ concentrations in the HCV in vitro transcription used in this study were
different from the physiological concentrations in cells [4,37]. However, under the optimal HCV transcription condition, HCV RdRp activation was observed by CyPA and CyPB (Fig. 1).

The amount of CyPA varies by cell type [59]. In some cells, CyPB may also contribute to HCV 1b replication because it localizes in the endoplasmic reticulum and plasma membranes [60,61], which form a membrane web in which an HCV replication complex exists [1].

PPI activity of CyPs is essential for HCV replicon activation [32,53]. CyP inhibitors (DEBIO-025, NIM811, and SCY-635) inhibit PPI activity. The PPI activity of CyPA contributed to HCV RdRp activation and CyP-NS5A binding [36]. The PPI activity of CyPA partly contributed to the activation of HCR6 (1b) RdRp in vitro (Fig. 3A, p<0.01). The PPI activity of CyPB may not be essential for RdRp activation because the activation ratio was not large between CyPB and CyPBAPII, although the experiment showed a statistically significant difference (Fig. 3B). There may be differences in the RdRp activation mechanisms of CyPA with and without PPI activity. This finding will help with the development of new CyPA inhibitors that target domains other than PPI.

The mechanism of HCV RdRp activation by CyPs is not clear. In the least, CyPA and CyPB enhanced the early stage of HCV transcription, including the template RNA binding of HCV RdRp (Fig. 4) [29,41,45]. The productive template-polymerase binding is the late-limiting step of transcription initiation by HCV RdRp in vitro, and a small fraction of HCV RdRp was active in vitro [62,63]. CyP may enhance this step on many HCV RdRp molecules to show apparent activation of RdRp in vitro.

Considering the controversial reports on CyP and HCV replication [29,33,35,41,43,44], it can be concluded that CyPA is the major factor of HCV genome replication and that the activation of HCV RdRp may require other factors such as NS5A to condense CyPA around the HCV RdRp. Although many HCV treatment approaches have been applied in addition to Peg-IFN, ribavirin, and NS3/NS4a protease inhibitor [64–67], more effort has to be made to ensure an HCV cure. This study and that of Heck et al. [54] demonstrated similar activation kinetics and genotype specificity of CyPA activation (Figs. 2 and 5). CyPB also has the potential to activate HCV 1b genome replication in a limited condition, and it should also be included as the target of inhibitor development because HCV 1b is the genotype that is most resistant to treatment [13].

Acknowledgments

We thank Drs. J. Bulh, C. Rice, and R. Bartenshlagler for the HCV J6CF, H77, and Con1 plasmids, respectively. This work was supported by grants-in-aid from the Chinese Academy of Sciences (0514P5113 and 0812P1A131) and the Chinese National Key Project (2008ZX10002-014). The GenBank accession numbers of HCV H77, RMT, HCR6, NN, Con1, JFH1, and J6CF are NC_004102, AB520610, AY045702, AB080299, AJZ3799, ABO47639, and AF177036, respectively.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.bbadis.2012.08.017.

References

Fig. 5. Activation effects of cyclophilin A (CyPA) and cyclophilin B (CyPB) on hepatitis C virus (HCV) RNA polymerase of genotypes 1a, 1b, and 2a. The polymerase activation effects of CyPA and CyPB on HCV 1a (H77 and RMT), 1b (HCR6, NN, and Con1), and 2a (J6CF and JFH1) were examined. HCV RdRp (100 nM) was incubated with 50× CyPA and 5× CyPB. The mean relative polymerase activation ratio and standard deviation (error bar) were calculated from 3 independent measurements.
H. Grise, S. Frausto, T. Logan, H. Tang, A conserved tandem cyclophilin-binding
U. Chatterji, P. Lim, M.D. Bobardt, S. Wieland, D.G. Cordek, G. Vuagniaux, F. Fernandes, I.U. Ansari, R. Striker, cyclosporine inhibits a direct interaction be-